Earned Schedule schedule performance analysis from EVM measures

Walt Lipke
PMI - Oklahoma City Chapter ss
+1 4053641594
waltlipke@cox.net
www.earnedschedule.com

h e g

$\bullet \circ$
 Importance of Schedule

"We need to maintain our attention on schedule delivery. Data tells us that since July 2003, real cost increase in projects accounted for less than 3 percent of the total cost growth.
...Therefore, our problem is not cost, it is SCHEDULE."

- Dr. Steve Gumley, CEO

Defence Materiel Organization (Australia)
Quote taken from DMO Bulletin, July 2006, Issue 61, page

Overview

- Earned Schedule Concept
- Calculation of Earned Schedule
- Time-Based Schedule Indicators
- Project Duration Prediction \& Forecasting
- Critical Path Analysis
- Network Schedule Analysis
o Demonstration of the ES Spreadsheet

Earned Value Basics

EVM Schedule Indicators

- SV \& SPI behave erratically for projects behind schedule
- SPI improves and equals 1.00 at end of project
- SV improves and concludes at $\$ 0$ variance
- Schedule indicators lose predictive ability over the last third of the project
- Why does this happen?
- $S V=E V-P V$

At planned completion PV = BAC

- SPI = EV / PV

At actual completion EV = BAC

Earned Schedule Concept

For the above example, $\mathrm{ES}=5$ months ...that is the time associated with the PMB at which PV equals the EV accrued at month 7.

Earned Schedule Metric

- Required measures
- Performance Measurement Baseline (PMB) - the time phased planned values (PV) from project start to completion
- Earned Value (EV) - the planned value which has been "earned"
- Actual Time (AT) - the actual time duration from the project beginning to the time at which project status is assessed
- All measures available from EVM

Earned Schedule Calculation

- ES (cumulative) is the:

Number of complete PV time increments EV equals or exceeds + the fraction of the incomplete PV increment

- ES = C + I where:
$\mathrm{C}=$ number of time increments for $\mathrm{EV} \geq \mathrm{PV}$
$I=\left(E V-P V_{C}\right) /\left(P V_{C+1}-P V_{C}\right)$

Interpolation Calculation

$$
\begin{aligned}
& \mathrm{I} / 1 \mathrm{mo}=\mathrm{p} / \mathrm{q} \\
& \mathrm{I}=(\mathrm{p} / \mathrm{q}) * 1 \mathrm{mo}
\end{aligned}
$$

$$
p=E V-P V_{C}
$$

$$
q=P V_{C+1}-P V_{C}
$$

$$
I=\frac{E V-P V_{C}}{P V_{C+1}-P V_{C}} * 1 m o
$$

[^0]
Earned Schedule Indicators

- Schedule Variance:

$$
\mathrm{SV}(\mathrm{t})=\mathrm{ES}-\mathrm{AT}
$$

- Schedule Performance Index:
SPI(t) = ES / AT
where AT is "Actual Time" - the duration from start to time now
- SV(t) and SPI(t) are time-based (months, weeks ...)

ES Computation Example

Copyright © Lipke 2009

ES Computation Example

ES Computation Example

Earned Schedule Indicators

- What happens to the ES indicators, SV(t) \& $\mathrm{SPI}(\mathrm{t})$, when the planned project duration (PD) is exceeded ($\mathrm{PV}=\mathrm{BAC}$)?

They Still Work ... Correctly!!

- ES will be \leq PD, while AT > PD
- SV(t) will be negative (time behind schedule)
- $\operatorname{SPI}(\mathrm{t})$ will be <1.00

Reliable Values from Start to Finish !!

SV Comparison

eva
europe GENEVA 2009

SPI Comparison

Late Finish Project

Schedule Prediction

- Can the project be completed as planned?
- TSPI = Plan Remaining / Time Remaining
= (PD - ES) / (PD - AT)
where $\quad P D$ is the planned duration (time at BAC)
$(P D-E S)=P D W R$
PDWR = Planned Duration for Work Remaining
- ...completed as estimated?
- TSPI = (PD - ES) / (ED - AT)
where ED = Estimated Duration

TSPI Value		Predicted Outcome
≤ 1.00		Achievable
18	>1.10	
Copyright © Lipke 2009		

Schedule Forecasting

- Long time goal of EVM ...Prediction of total project duration from present schedule status
- Independent Estimate at Completion (time)
- $\operatorname{IEAC}(\mathrm{t})=\mathrm{PD} / \mathrm{SPI}(\mathrm{t})$
- $\operatorname{IEAC}(\mathrm{t})=\mathrm{AT}+(\mathrm{PD}-\mathrm{ES}) / \mathrm{PF}(\mathrm{t})$ where $\operatorname{PF}(\mathrm{t})$ is the Performance Factor (time)
- Analogous to IEAC used to forecast final cost
- Independent Estimated Completion Date (IECD)
- IECD $=$ Start Date + IEAC(t$)$

Performance Confirmation

- $\operatorname{SPI}(\mathrm{t}) \& \operatorname{SV}(\mathrm{t})$ do portray the real schedule performance
- At early \& middle project stages pre-ES \& ES forecasts of project duration produce similar results
- At late project stage ES forecasts outperform all pre-ES forecasts
- "The use of the SPI(t) in conjunction with the TSPI has been demonstrated to be useful for managing the schedule." Stephan Vandevoorde - Fabricom Airport Systems, Belgium
- "The results reveal that the earned schedule method outperforms, on the average, all other forecasting methods." Dr. Mario Vanhoucke \& Stephan Vandevoorde

\bigcirc
 Research Results

Forecast Accuracy and the Completion of Work

Simulation runs performed: 1 run project finish ahead of schedule, 1 run projects finish behind

Vanhoucke M., S. Vandevoorde, "A simulation and evaluation of earned value metrics to forecast the project duration," Journal Of Operations Research Society September 2006

- - Research Results

Hypothesis Test Results - EVM vs ES Time Forecast								
Significance$\alpha=0.05$		**********		Percent Complete Test Bands			**********	
		10\% - 40\%	40\% -70\%	70\% - 100\%	10\% - 100\%	25\% - 100\%	50\% - 100\%	75\% - 100\%
Test Statistic Sign Test		0.0000	0.0267	0.0000	0.0000	0.0000	0.0002	0.0000
		Ha						
Count \#1s	ES	11	7	12	11	11	10	12
	EVM	5	9	4	5	5	6	4

Hypothesis Test: Sign Test at 0.05 level of significance.
Ho: The aggregate of EVM forecasts is better / the null hypothesis
Ha: ES forecast is better / the alternate hypothesis

Earned Schedule Terminology

	EVM	Earned Schedule
Status	Earned Value (EV)	Earned Schedule (ES)
	Actual Costs (AC)	Actual Time (AT)
	SV	SV(t)
	SPI	SPI(t)
Future Work	Budgeted Cost for Work Remaining (BCWR)	Planned Duration for Work Remaining (PDWR)
	Estimate to Complete (ETC)	Estimate to Complete (time) ETC(t)
Prediction	Variance at Completion (VAC)	Variance at Completion (time) VAC(t)
	Estimate at Completion (EAC) (supplier)	Estimate at Completion (time) EAC(t) (supplier)
	Independent EAC (IEAC) (customer)	Independent EAC (time) IEAC(t) (customer)
	To Complete Performance Index (TCPI)	To Complete Schedule Performance Index (TSPI)

Earned Schedule Terminology

Metrics	Earned Schedule	$E S_{\text {cum }}$	ES = C + I number of complete periods (C) plus an incomplete portion (I)
	Actual Time	$\mathrm{AT}_{\text {cum }}$	AT = number of periods executed
Indicators	Schedule Variance	SV(t)	$\mathbf{S V}(\mathrm{t})=\mathrm{ES}-\mathrm{AT}$
		SV(t)\%	$\mathbf{S V}(\mathrm{t}) \%=(E S-A T) / E S$
	Schedule Performance Index	SPI(t)	$\mathbf{S P I}(\mathrm{t})=\mathrm{ES} / \mathrm{AT}$
	To Complete Schedule Performance Index	TSPI(t)	TSPI $(t)=(P D-E S) /(P D-A T)$
			TSPI(t) $=(\mathrm{PD}-\mathrm{ES}) /(E D-A T)$
Predictors	Independent Estimate at Completion (time)	IEAC(t)	$\operatorname{IEAC}(\mathrm{t})=\mathrm{PD} / \mathrm{SPI}(\mathrm{t})$
			$\operatorname{IEAC}(\mathrm{t})=\mathrm{AT}+(\mathrm{PD}-\mathrm{ES}) / \mathrm{PF}$

Earned Schedule Key Points

- ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
- SV(t) and SPI(t)
- Not constrained by PV calculation reference
- Provide duration based measures of schedule performance
- Valid for entire project, including early and late finish
- Facilitates integrated Cost/Schedule Management (using EVM with ES)

Schedule Analysis with EVM?

- Most practitioners analyze schedule from the bottom up using the network schedule, independent from EVM
...."It is the only way possible."
- Analysis of the Schedule is overwhelming
- Critical Path is used to shorten analysis
(CP is longest path of the schedule)
- Duration forecasting using Earned Schedule provides a macro-method similar to the method for estimating Cost
- A significant advance in practice
- But, there's more that ES facilitates

Facilitates Drill-Down Analysis

- ES can be applied to any level of the WBS, to include task groupings such as the Critical Path
- Requires creating PMB for the area of interest
- EV for the area of interest is used to determine its ES
- Enables comparison of forecasts, total project (TP) to Critical Path (CP)
- Desired result: forecasts are equal
- When TP forecast > CP forecast, CP has changed
- When CP > TP, possibility of future problems

ES Bridges EVM to the Schedule

ES Bridges EVM to the Schedule

How Can This Be Used?

- Tasks behind - possibility of impediments or constraints can be identified
- Tasks ahead - a likelihood of future rework can be identified
- The identification is independent from schedule efficiency
- The identification can be automated

PMs can now have a schedule analysis tool connected to the EVM Data!!

Schedule Analysis Example

Task	PV	PV@ES	EV@AT	EV - PV	I/C or R
$\mathbf{1}$	10	10	10	0	
$\mathbf{2}$	12	9	5	-4	I / C
$\mathbf{3}$	10	10	10	0	
$\mathbf{4}$	5	5	3	-2	I / C
$\mathbf{5}$	5	2	5	+3	R
$\mathbf{6}$	8	1	4	3	-1
$\mathbf{7}$	7	0	$1 / \mathrm{C}$		
$\mathbf{8}$	5	0	3	+1	R
Total	62	40	40	0	R

Leads to

- Concept of Schedule Adherence
- Most efficient project execution follows the plan
- ES provides a way to measure how closely execution is to the plan
- Schedule Adherence provides a means to refine predictions and forecasts
- Research underway
- Application has begun

Enhanced Forecasting Example

- 0
 Summary

o Derived from EVM data ... only

- Provides time-based schedule indicators
- Indicators do not fail for late finish projects
- Application is scalable up/down, just as is EVM
- Schedule prediction is better than any other EVM method presently used
- Facilitates bridging EVM analysis to include the Schedule
- Provides capability to understand source of rework and refine forecasts \& predictions

Available Resources

- PMI-Sydney http://sydney.pmichapters-australia.org.au/
- Repository for ES Papers and Presentations
- Earned Schedule Website
http://www.earnedschedule.com/
- Established February 2006
- Contains News, Papers, Presentations, ES Terminology, ES Calculators
- Identifies Contacts to assist with application
- Wikipedia references Earned Schedule http://en.wikipedia.org/wiki/Earned Schedule

-
 -
 ES Spreadsheet

Earned Schedule Calculator (v1)

[^0]: Subscript C identifies the planned value period at which EVcum $\geq \mathrm{PV}_{\mathrm{i}} \mathrm{Cum}$

