

europe GENEVA 2009

Earned Schedule schedule performance analysis from EVM measures

Walt Lipke

- PMI Oklahoma City Chapter ^{ss}
- +1 405 364 1594
- waltlipke@cox.net
- www.earnedschedule.com

h e g

Haute école de gestion de Genève Geneve Schoel of Business Administration

Importance of Schedule

"We need to maintain our attention on schedule delivery. Data tells us that since July 2003, real cost increase in projects accounted for less than 3 percent of the total cost growth.

...<u>Therefore, our problem is not cost, it is</u> <u>SCHEDULE</u>."

- Dr. Steve Gumley, CEO

Defence Materiel Organization (Australia)

Quote taken from DMO Bulletin, July 2006, Issue 61, page

Overview

- Earned Schedule Concept
- Calculation of Earned Schedule
- Time-Based Schedule Indicators
- Project Duration Prediction & Forecasting
- Critical Path Analysis
- Network Schedule Analysis
- o Demonstration of the ES Spreadsheet

Earned Value Basics

4

Copyright © Lipke 2009

EVA Europe 2009

EVM Schedule Indicators

- SPI improves and equals 1.00 at end of project
- SV improves and concludes at \$0 variance
- Schedule indicators lose predictive ability over the last third of the project
- Why does this happen?

• SV = EV – PV At planned completion PV = BAC • SPI = EV / PV At actual completion EV = BAC

Copyright © Lipke 2009

GENEVA 2009

Earned Schedule Metric

• Required measures

- Performance Measurement Baseline (PMB) the time phased planned values (PV) from project start to completion
- Earned Value (EV) the planned value which has been "earned"
- Actual Time (AT) the actual time duration from the project beginning to the time at which project status is assessed
- <u>All measures available from EVM</u>

Earned Schedule Calculation

o ES (cumulative) is the:

Number of complete PV time increments EV equals or exceeds + the fraction of the incomplete PV increment

• ES = C + I where:

C = number of time increments for $EV \ge PV$

 $I = (EV - PV_C) / (PV_{C+1} - PV_C)$

Interpolation Calculation

$$p = EV - PV_{C}$$
$$q = PV_{C+1} - PV_{C}$$

$$I = \frac{EV - PV_{C}}{PV_{C+1} - PV_{C}} * 1mo$$

Subscript C identifies the planned value period at which $EVcum \ge PV_icum$

9

Copyright © Lipke 2009

• • Earned Schedule Indicators

• Schedule Variance:

SV(t) = ES - AT

• Schedule Performance Index:

SPI(t) = ES / AT

where AT is "Actual Time" – the duration from start to time now

SV(t) and SPI(t) are time-based (months, weeks ...)

ES Computation Example

europe geneva 2009

• • Earned Schedule Indicators

 What happens to the ES indicators, SV(t) & SPI(t), when the planned project duration (PD) is exceeded (PV = BAC)?

They Still Work ... <u>Correctly</u>!!

- ES will be \leq PD, while AT > PD
 - SV(t) will be negative (time behind schedule)
 - SPI(t) will be < 1.00

Reliable Values from Start to Finish !!

SV Comparison

SPI Comparison

•••

Late Finish Project

Copyright © Lipke 2009

Schedule Forecasting

- Long time goal of EVM ... Prediction of total project duration from present schedule status
- Independent Estimate at Completion (time)
 - IEAC(t) = PD / SPI(t)
 - IEAC(t) = AT + (PD ES) / PF(t)
 - where PF(t) is the Performance Factor (time)
 - Analogous to IEAC used to forecast final cost
- Independent Estimated Completion Date (IECD)
 - IECD = Start Date + IEAC(t)

Performance Confirmation

- SPI(t) & SV(t) do portray the real schedule performance
- At early & middle project stages pre-ES & ES forecasts of project duration produce similar results
- At late project stage ES forecasts outperform all pre-ES forecasts
- "The use of the SPI(t) in conjunction with the TSPI has been demonstrated to be useful for managing the schedule." Stephan Vandevoorde – Fabricom Airport Systems, Belgium
- "The results reveal that the earned schedule method outperforms, on the average, all other forecasting methods." *Dr. Mario Vanhoucke & Stephan Vandevoorde*

Research Results

Vanhoucke M., S. Vandevoorde, "A simulation and evaluation of earned value metrics to forecast the project duration," *Journal Of Operations Research Society* September 2006

21

Copyright © Lipke 2009

Research Results

Hypothesis Test Results - EVM vs ES Time Forecast								
Significance α = 0.05		******* Percent Complete Test Bands *********					* *	
		10% - 40%	40% - 70%	70% - 100%	10% - 100%	25% - 100%	50% - 100%	75% - 100%
Test Statistic		0.0000	0.0267	0.0000	0.0000	0.0000	0.0002	0.0000
Sign Test		Ha	Ha	Ha	Ha	Ha	Ha	Ha
Count	ES	11	7	12	11	11	10	12
#1s	EVM	5	9	4	5	5	6	4

Hypothesis Test: Sign Test at 0.05 level of significance.

Ho: The aggregate of EVM forecasts is better / the null hypothesis

Ha: ES forecast is better / the alternate hypothesis

Earned Schedule Terminology

	EVM	Earned Schedule		
	Earned Value (EV)	Earned Schedule (ES)		
Status	Actual Costs (AC)	Actual Time (AT)		
	SV	SV(t)		
	SPI	SPI(t)		
Future	Budgeted Cost for Work Remaining (BCWR)	Planned Duration for Work Remaining (PDWR)		
Work	Estimate to Complete (ETC)	Estimate to Complete (time) ETC(t)		
	Variance at Completion (VAC)	Variance at Completion (time) VAC(t)		
Prediction	Estimate at Completion (EAC) (supplier)	Estimate at Completion (time) EAC(t) (supplier)		
	Independent EAC (IEAC) (customer)	Independent EAC (time) IEAC(t) (customer)		
	To Complete Performance Index (TCPI)	To Complete Schedule Performance Index (TSPI)		

Earned Schedule Terminology

Metrics	Earned Schedule	ES _{cum}	ES = C + I number of complete periods (C) plus an incomplete portion (I)	
	Actual Time	AT _{cum}	AT = number of periods execute	
	Schodulo Varianco	SV(t)	SV(t) = ES – AT	
	Schedule valiance	SV(t)%	SV(t)% = (ES – AT) / ES	
Indicators	Schedule Performance Index	SPI(t)	SPI(t) = ES / AT	
	To Complete Schedule Performance Index	TSPI(t)	TSPI(t) = (PD – ES) / (PD – AT)	
			TSPI(t) = (PD – ES) / (ED – AT)	
Dradiatora	Independent Estimate	IEAC(t)	IEAC(t) = PD / SPI(t)	
Fredictors	at Completion (time)		IEAC(t) = AT + (PD – ES) / PF	

24

Copyright © Lipke 2009

Earned Schedule Key Points

- ES Indicators constructed to behave in an analogous manner to the EVM Cost Indicators, CV and CPI
- SV(t) and SPI(t)
 - Not constrained by PV calculation reference
 - Provide duration based measures of schedule performance
 - Valid for entire project, including early and late finish
- Facilitates integrated Cost/Schedule Management (using EVM with ES)

• Schedule Analysis with EVM?

• Most practitioners analyze schedule from the bottom up using the network schedule, independent from EVM

...."It is the only way possible."

- Analysis of the Schedule is overwhelming
- Critical Path is used to shorten analysis (CP is longest path of the schedule)
- Duration forecasting using Earned Schedule provides a macro-method similar to the method for estimating Cost

<u>A significant advance in practice</u>

• But, there's more that ES facilitates

Facilitates Drill-Down Analysis

- ES can be applied to any level of the WBS, to include task groupings such as the <u>Critical Path</u>
 - Requires creating PMB for the area of interest
 - EV for the area of interest is used to determine its ES
- Enables comparison of forecasts, total project (TP) to Critical Path (CP)
 - Desired result: forecasts are equal
 - When TP forecast > CP forecast, CP has changed
 - When CP > TP, possibility of future problems

ES Bridges EVM to the Schedule

europe **GENEVA 2009**

How Can This Be Used?

- <u>Tasks behind</u> possibility of impediments or constraints can be identified
- <u>Tasks ahead</u> a likelihood of future rework can be identified
- The identification is independent from schedule efficiency
- The identification can be automated

PMs can now have a schedule analysis tool connected to the EVM Data!!

Task	PV	PV@ES	EV@AT	EV - PV	I/C or R
1	10	10	10	0	
2	12	9	5	-4	٧C
3	10	10	10	0	
4	5	5	3	-2	I/C
5	5	2	5	+3	R
6	8	4	3	-1	I/C
7	7	0	1	+1	R
8	5	0	3	+3	R
Total	62	40	40	0	

• • Leads to ...

- o Concept of <u>Schedule Adherence</u>
 - Most efficient project execution follows the plan
 - ES provides a way to measure how closely execution is to the plan
- <u>Schedule Adherence</u> provides a means to refine predictions and forecasts
 - Research underway
 - Application has begun

Enhanced Forecasting Example

33

Copyright © Lipke 2009

EVA Europe 2009

• • Summary

- Derived from EVM data ... only
- Provides time-based schedule indicators
- Indicators do not fail for late finish projects
- Application is scalable up/down, just as is EVM
- Schedule prediction is better than any other EVM method presently used
- Facilitates bridging EVM analysis to include the Schedule
- Provides capability to understand source of rework and refine forecasts & predictions

Available Resources

- o PMI-Sydney <u>http://sydney.pmichapters-australia.org.au/</u>
 - Repository for ES Papers and Presentations
- Earned Schedule Website

http://www.earnedschedule.com/

- Established February 2006
- Contains News, Papers, Presentations, ES Terminology, ES Calculators
- Identifies Contacts to assist with application
- Wikipedia references Earned Schedule

http://en.wikipedia.org/wiki/Earned_Schedule

ES Spreadsheet

Earned Schedule Calculator (v1)

36

Copyright © Lipke 2009